

| KING EDWARD VI<br>HANDSWORTH WOOD<br>GIRLS' ACADEMY |               | KEVI HWGA Curriculum Map                                                                                                                   |  |  |  |  |  |  |
|-----------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Cur                                                 | riculum Purpo | ose:                                                                                                                                       |  |  |  |  |  |  |
|                                                     | Beyond KEVI   | A Level Chemistry is a diverse subject to study. It provides learners with many transferable skills, and this is why it is a very popular  |  |  |  |  |  |  |
|                                                     | HWGA &        | course which leads to direct employment or further education through either degree level studies or apprenticeships both in the            |  |  |  |  |  |  |
|                                                     | careers       | scientific and non-scientific sectors.                                                                                                     |  |  |  |  |  |  |
|                                                     |               | Careers: Which Degree Courses Do Your A-Levels Suit? - The Uni Guide Chemistry career options   RSC Education Pharmacist - Analytical      |  |  |  |  |  |  |
|                                                     |               | Chemist – Biochemist – Chemical Engineer – Cheminformatics – Cosmetic Chemist – Crystallographer – Food Technologist – Forensic            |  |  |  |  |  |  |
| t                                                   |               | Scientist – Geochemist – Immunologist – Laboratory Analyst – Manufacturing Chemist – Materials Engineer – Organic or Inorganic             |  |  |  |  |  |  |
| ex a                                                |               | Chemist — Process Chemist – Product Developer – Researcher – Toxicologist – Quantum Chemist – Water Chemist - Medical specialist           |  |  |  |  |  |  |
| ont                                                 |               | – Doctor. Combined with non-scientific A-level subjects' other careers such as Law and Accountancy are accessible since the skills used    |  |  |  |  |  |  |
| in Chemistry are being recognised in other sectors. |               |                                                                                                                                            |  |  |  |  |  |  |
|                                                     | KS5           | KS5 Chemists will embark on a journey that encourages curiosity, inspires, and nurtures a passion for the subject through an in-depth      |  |  |  |  |  |  |
|                                                     | Intent        | study of Physical chemistry, inorganic Chemistry and Organic Chemistry through theory, research, independent study, and practical          |  |  |  |  |  |  |
|                                                     |               | work. We will provide an enriched, broad, and stimulating curriculum that empowers students to make decisions, critically evaluate         |  |  |  |  |  |  |
|                                                     |               | scientific and technological developments that impact society and equip them with the knowledge and skills to pursue further study         |  |  |  |  |  |  |
|                                                     |               |                                                                                                                                            |  |  |  |  |  |  |
|                                                     | HPL           | Key HPL skills such as strategic planning, precision, analyse, evaluate, critical or logical thinking are embedded within the practical    |  |  |  |  |  |  |
|                                                     |               | experience which complement the scientific investigative skills and assessment objectives set by the exam board.                           |  |  |  |  |  |  |
|                                                     |               | Further HPL skills and teaching toolkit are applied such as big picture thinking, connection finding, generalisation, self-regulation, and |  |  |  |  |  |  |
|                                                     |               | meta-cognition will be developed through this broad curriculum; enriched with a range of opportunities from presenting, project            |  |  |  |  |  |  |
|                                                     |               | work, research, discussion, trips and independent work.                                                                                    |  |  |  |  |  |  |

| INDIG EDWARD VI<br>INNIG EDWARD VI<br>GIRLS' ACADEMY |                        |                                        | KEVI HWGA Curriculu               | m Map                     |                         |                                                |
|------------------------------------------------------|------------------------|----------------------------------------|-----------------------------------|---------------------------|-------------------------|------------------------------------------------|
| Year 12                                              | Autumn 1               | Autumn 2                               | Spring 1                          | Spring 2                  | Summer 1                | Summer 2                                       |
| Key                                                  | Baseline               | Bonding                                | Halogenoalkanes                   | Alcohols                  | Analytic Techniques     | Exam Technique                                 |
| Content                                              | assessment             | Nomenclature &                         | Alkenes                           | Organic Analysis          | Practical Techniques    | Review of revision                             |
|                                                      | Atomic Structure       | Isomerism                              | Group 7 & Group 2                 | Equilibria                |                         | strategies                                     |
|                                                      | Amount of              | Alkanes                                | Energetics                        | Redox                     | Properties of Period 3  | Careers Research                               |
|                                                      | Substance              | Periodicity                            | Kinetics                          |                           | & their Oxides (A       | UCAS Support                                   |
|                                                      |                        |                                        |                                   |                           | Level)                  | Supporting Yr11                                |
|                                                      |                        |                                        |                                   |                           |                         | Taster days                                    |
|                                                      |                        |                                        |                                   |                           |                         | Mock Exam                                      |
| Big Qs                                               | How do the chemical    | How do the physical and                | Why are Halogenoalkanes           | What is a Redox reaction  | What analytical         | What knowledge and                             |
|                                                      | properties of elements | chemical properties of                 | being much more reactive          | and what does it involve? | techniques are used by  | understanding are                              |
|                                                      | depend on their atomic | compounds depend on                    | than alkanes. What are            | How can we identify the   | chemists, to analyse    | required to successfully                       |
|                                                      | structure and electron | the ways in which the                  | their uses and why has the        | elements involved and     | organic compounds?      | answer required                                |
|                                                      | arrangement?           | compounds are held                     | use of some                       | how do we use half        |                         | practical questions                            |
|                                                      | llow do chomisto       | together by chemical                   | nalogenoalkanes has been          | equations?                | How are practical       | llow can we reflect on                         |
|                                                      | identify unknown       | bonas ana by<br>intermolecular forces? | restricted? Outline the           | How do alcohols react     | nurnoseful to complete  | now can we rejiect on<br>our study skills? How |
|                                                      | substances?            | How do the theories of                 | reactions and explain the         | and form new products?    | reactions, separate     | do we revise, retrieve                         |
|                                                      | What are the key       | bondina explain how                    | formation of major and            | How is this done in the   | mixtures. work out      | and revisit previously                         |
|                                                      | principles for how the | atoms or ions are held                 | minor products referring to       | laboratory, what          | concentrations and      | learnt content? How do                         |
|                                                      | mass spectrometer      | together in these                      | the relative stabilities of       | techniques are used and   | identify substances?    | we study                                       |
|                                                      | works?                 | structures?                            | primary, secondary, and           | what conditions are       |                         | independently?                                 |
|                                                      |                        | How do we name Carbon                  | tertiary carbocation              | required                  | How do Period 3         |                                                |
|                                                      | How do chemists        | compounds and how do                   | intermediates.                    | How are electrons         | elements react with     | How to we progress                             |
|                                                      | measure and calculate  | we draw the structures of              | What are the trends and           | involved in redox         | of the solutions formed | from working memory                            |
|                                                      | the mass of particles? | chain, position, and                   | properties in Group 2 and         | reactions and what are    | when the oxides react   | Into long term                                 |
|                                                      | determine the number   | How are alkanes                        | Group 7:<br>How does the study of | agents' involvement?      | with water illustrates  | How do we consider                             |
|                                                      | of fundamental         | modified by the process                | kinetics enable chemists to       | agents involvement:       | further trends in       | our subject to planning                        |
|                                                      | particles in atoms and | of cracking and how are                | determine how a chanae in         | What is equilibrium and   | properties across this  | our Careers further &                          |
|                                                      | ions using mass        | alkenes structured and                 | conditions affects the            | what is Chatelier's       | period?                 | plan for a successful                          |
|                                                      | number, atomic number  | what effect does this                  | speed of a chemical               | principle? How are the    |                         | UCAS application                               |
|                                                      | and charge?            |                                        | reaction. How can chemists        | principles used?          |                         |                                                |

|                                                             | How are quantities<br>calculated for reactants<br>and products in<br>chemical reactions and<br>how is this information<br>used?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | have on their commercial<br>use?                                                                                                                                                                                                                                                                                                                                                                | manipulate variables in<br>chemical reactions in order<br>to speed them up or slow<br>them down? How can<br>enthalpy change be<br>measured?                                                                                                                                                                                                                                                                                                                                            | How do redox reactions<br>occur in inorganic and<br>organic chemistry?                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                    |                                                                                                     |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Key<br>Knowledge<br>and Skills                              | Atomic structure<br>Development of atomic<br>models<br>TOF Mass spectrometer<br>Electron configuration<br>Ionisation energies<br>Using balanced<br>equations to calculate<br>masses volumes of gases<br>percentage yields<br>percentage atom<br>economies,<br>concentrations, and<br>volumes for reactions in<br>solutions. Empirical<br>Formula. Make up a<br>standard solution and<br>carry out titrations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Types of chemical<br>bonding, their structures,<br>and properties.<br>Types of physical bonding<br>– forces between<br>molecules and how<br>properties change.<br>Polarity.<br>Shapes of molecules.<br>Organic molecules,<br>nomenclature, and<br>isomerism.<br>Alkanes, fractional<br>distillation, and cracking.<br>Free-radical mechanism<br>Explaining trends across<br>the periodic table. | Enthalpy change and<br>calculations<br>Laboratory methods on<br>measuring enthalpy change<br>Plotting graphs, recording<br>data, and evaluating.<br>Calorimetry<br>Hess's Law<br>Calculating bond enthalpies<br>Reactions of Alkenes.<br>Reactions of group 2 and<br>group 7 elements.<br>Kinetics: Collision theory,<br>Maxwell-Boltzmann<br>distribution, effect of<br>temperature, pressure,<br>concentration on the rate<br>of reaction. Practical work<br>to investigate rates of | Reactions of alcohols,<br>industrial production,<br>reaction conditions and<br>organic laboratory<br>techniques and<br>equipment. Practical skills<br>oxidizing an alcohol.<br>Organic analysis.<br>Chemical Equilibria<br>Le Chatelier's Principle<br>and Kc calculations and<br>constructing expressions.<br>Predicting effects of<br>changing conditions.<br>Redox reactions:<br>oxidation states, half<br>equations and combining<br>half equations. | Mass spectrometry<br>Interpreting Mass Spectra<br>Infrared Spectroscopy<br>Interpreting IR Spectra<br>Practical Exam questions<br>and review of techniques,<br>equipment, and practical<br>skills. |                                                                                                     |
| Key<br>Assessment<br>Objectives<br>Feedback &<br>Assessment | AO1: Demonstrate knowledge and understanding of scientific ideas, processes, techniques, and procedures.AO2: Apply knowledge and understanding of scientific ideas, processes, techniques, and procedures.nentAO1: Demonstrate knowledge and understanding of scientific ideas, processes, techniques, and procedures:In a theoretical context • in a practical context • when handling qualitative data • when handling qualitative data.nentAO3: Analyse, interpret and evaluate scientific information, ideas, and evidence, including in relation to issues, to: • m judgements and reach conclusions • develop and refine practical design and procedures.Fortnightly testsImage: Fortnightly tests< |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                    | e and understanding<br>tive data ● when<br>o issues, to: ● make<br>◆ Mock Exams<br>◆ CPAC catch ups |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                    |                                                                                                     |

| Year 13    | Autumn 1                | Autumn 2                  | Spring 1                            | Spring 2                   | Summer 1 | Summer 2 |
|------------|-------------------------|---------------------------|-------------------------------------|----------------------------|----------|----------|
| Key Topics | Nomenclature &          | Aromatic Chemistry        | Amino acids, proteins               | Electrode Potentials       | Exams    | Exams    |
|            | Stereoisomerism         | Organic Synthesis         | & DNA s                             | Reactions of Aqueous       |          |          |
|            | Carbonyl Chemistry      | Acids & Bases             | Transition Metals                   | lons                       |          |          |
|            | Rate Equation           | Polymers                  | Thermodynamic                       | NMR                        |          |          |
|            | Kn                      | Amines                    | ,                                   | Chromatography             |          |          |
|            | How can we distinguish  | Why was the structure of  | How are condensation                | Where do Redox             |          |          |
|            | between optical isomers | benzene tricky to         | polymers formed and what            | reactions take place?      |          |          |
|            | and why do they even    | discover? How is benzene  | are their properties and            | What can the potential     |          |          |
|            | exist? How do we name   | an example of an          | typical uses? What are the          | difference that is created |          |          |
|            | acid anhydrides,        | aromatic and what do we   | problems with the reuse             | drive? What are the very   |          |          |
|            | amines, other acid      | know about its structure  | and disposal of both                | important commercial       |          |          |
|            | derivatives using       | and its substitution      | addition and condensation           | applications of            |          |          |
|            | IUPAC?                  | reactions? How are        | polymers? What's in the             | Electrochemical cells?     |          |          |
|            |                         | aromatic compounds        | current news about this?            | How do we set an           |          |          |
|            | How do aldehydes,       | used around the world?    |                                     | electrochemical cell up in |          |          |
|            | ketones, carboxylic     | How are functional        | What are the structures             | the laboratory?            |          |          |
|            | acids, and their        | groups converted to the   | and functions of                    |                            |          |          |
|            | derivatives use the     | desired functional        | polyesters/amides, amino            | How do we test for         |          |          |
|            | carbonyl group to react | groups? What reagents     | acids, proteins, and DNA?           | transition metal ions      |          |          |
|            | and interact with       | are required? What        | How is the double stranded          | using aqueous ion          |          |          |
|            | nucleophiles? How can   | conditions are necessary? | helix structure held                | reactions?                 |          |          |
|            | we use mechanisms to    | How do we use             | together? What is the               |                            |          |          |
|            | understand why          | mechanisms to             | significance of the various         | How do chemists use a      |          |          |
|            | carbonyls react the way | understand how            | types of bonding in                 | variety of techniques to   |          |          |
|            | they do? How can we     | molecules will interact   | maintaining the structure           | deduce the structure of    |          |          |
|            | predict the products of | with reagents in chemical | of DNA?                             | compounds? How is          |          |          |
|            | these reactions? Why is | reactions.                |                                     | nuclear magnetic           |          |          |
|            | acylation important?    | How and why are Acids     | What does the 3d block              | resonance used in          |          |          |
|            | How do we make          | and bases important in    | contain? How are these              | addition to other          |          |          |
|            | aspirin?                | domestic, environmental,  | metals unlike the metals in         | methods as an analytical   |          |          |
|            |                         | and industrial contexts.  | Groups 1 and 2? What are            | technique. How do we       |          |          |
|            | How in rate equations   | What causes Acidity in    | the properties of these             | use the analytical data to |          |          |
|            | does the mathematical   | aqueous solutions and     | elements, and which can be          | solve problems?            |          |          |
|            | relationship between    | what kind of scale has    | used as catalysts. How do           |                            |          |          |
|            | rate of reaction and    | been maae to measure      | catalysts work?                     |                            |          |          |
|            | concentration give      | tnis? What is a Buffer    | 14/h and some the same stars and it |                            |          |          |
|            | information about the   | solutions, and why are    | what are thermodynamics             |                            |          |          |
|            | mecnanism of a          | they important industrial | and now does it build on            |                            |          |          |
|            | reaction that may occur | ana biological            | the Energetics section?             |                            |          |          |
|            | in several steps?       | applications?             | How does thermodynamics             |                            |          |          |

|            |                           | What are Amines and        | allow us to understand the   |                              |  |
|------------|---------------------------|----------------------------|------------------------------|------------------------------|--|
|            |                           | what do they consist off?  | stability of compounds and   |                              |  |
|            |                           | How do they react as       | why chemical reactions       |                              |  |
|            |                           | nucleophiles and cause     | occur? How is free-energy    |                              |  |
|            |                           | further substitutions?     | change to be calculated.     |                              |  |
|            |                           | What difficulties can this | _                            |                              |  |
|            |                           | lead to?                   |                              |                              |  |
| Кеу        | Explain and analyse rate  | Discovery of the structure | Students will learn how to   | Redox reactions explain      |  |
| Knowledge  | equations, orders and     | of benzene. Evaluating     | name amines and describe     | how they produce a           |  |
| and skills | initial rate methods as   | and considering theories.  | their basic properties and   | potential difference and     |  |
|            | well as being able to     | Reaction and mechanisms    | synthesis. As well as        | explain some of their        |  |
|            | explain and use the       | of aromatic compounds.     | explaining nucleophilic      | commercial uses.             |  |
|            | Arrhenius equation.       | Making Aspirin. The        | substitution.                |                              |  |
|            | Reactions, mechanisms,    | laboratory techniques      | The structure of proteins –  | How aqueous ions             |  |
|            | conditions of             | required to synthesis and  | primary, tertiary,           | undergo changes in           |  |
|            | aldehydes/ketones/        | purified organic products. | quaternary. Enzymes.         | chemical reactions to        |  |
|            | esters/carboxylic         |                            |                              | cause colour changes and     |  |
|            | acids/acid chlorides/acid | Addition and               | Students will be able to     | oxidation states. Practical  |  |
|            | anhydrides. Predicting    | condensation reactions of  | describe and explain the     | skills of observing and      |  |
|            | outcomes and uses of      | polymers. Uses and         | properties of condensation   | recording accurately.        |  |
|            | products.                 | properties of polymers.    | polymers and explain the     |                              |  |
|            | Use Arrhenius's           |                            | difficulties of reuse and    | How NMR is used as an        |  |
|            | rearranged equation       | How is one functional      | disposal. Students will be   | analytical technique. How    |  |
|            | with experimental data    | group changed to           | able to describe the         | to interpret integration     |  |
|            | to plot a straight-line   | another. What conditions   | structure and function of    | data. Use 1H and 13C         |  |
|            | graph with slope –Ea /R   | are needed and what        | amino acids, proteins, and   | NMR data to identify         |  |
|            | Measuring the rate of     | steps are needed to make   | DNA                          | molecules. Applying rules.   |  |
|            | reaction: • by an initial | the desired product?       |                              |                              |  |
|            | rate method • by a        |                            | Chemical properties of       | Types of chromatography      |  |
|            | continuous monitoring     | Structures of acids and    | transition metals, complex   | and the principles behind    |  |
|            | method                    | bases. The pH scale and    | ion shapes and isomerism.    | how it is used as a          |  |
|            |                           | how buffer solutions are   | Explaining how and why       | separating technique.        |  |
|            |                           | made. Calculations         | transition metals form       | Practical skills to carry it |  |
|            |                           | required to produce        | coloured compounds.          | out.                         |  |
|            |                           | buffers.                   | Ligand exchange reactions.   |                              |  |
|            |                           |                            | Uses as catalysts. Types of  |                              |  |
|            |                           |                            | catalysts. Autocatalysis.    |                              |  |
|            |                           |                            | Redox Titrations – practical |                              |  |
|            |                           |                            | skills.                      |                              |  |
|            |                           |                            | Students will learn the      |                              |  |
|            |                           |                            | theory of thermodynamics     |                              |  |
|            |                           |                            | and enthalpy change in       |                              |  |

|            |                                                                                                                                                               |                                       | solution. They will be able<br>to explain the Born-Haber<br>process, as well as<br>Equilibrium and Kp |                                       |       |       |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------|-------|-------|--|--|
| Кеу        | AO1: Demonstrate knowledge and understanding of scientific ideas, processes, techniques, and procedures. • AO2: Apply knowledge and understanding of          |                                       |                                                                                                       |                                       |       |       |  |  |
| assessment | scientific ideas, processes, techniques, and procedures: • in a theoretical context • in a practical context • when handling qualitative data • when handling |                                       |                                                                                                       |                                       |       |       |  |  |
| Objectives | quantitative data. • AO3                                                                                                                                      | iding in relation to issues, t        | o: • make judgements                                                                                  |                                       |       |       |  |  |
|            | and reach conclusions • develop and refine practical design and procedures.                                                                                   |                                       |                                                                                                       |                                       |       |       |  |  |
| Feedback & | <ul> <li>AS Baseline Test</li> </ul>                                                                                                                          | <ul> <li>Fortnightly tests</li> </ul> | Fortnightly tests/                                                                                    | <ul> <li>Fortnightly tests</li> </ul> | EXAMS | EXAMS |  |  |
| Assessment | Fortnightly tests                                                                                                                                             | CPAC PRCATICAL                        | MOCK                                                                                                  | <ul> <li>CPAC PRACTICAL</li> </ul>    |       |       |  |  |
|            | <ul> <li>CPAC PRACTICAL</li> </ul>                                                                                                                            |                                       | <ul> <li>CPAC PRACTICAL</li> </ul>                                                                    |                                       |       |       |  |  |
|            |                                                                                                                                                               |                                       |                                                                                                       |                                       |       |       |  |  |
|            |                                                                                                                                                               |                                       |                                                                                                       |                                       |       |       |  |  |
|            |                                                                                                                                                               |                                       |                                                                                                       |                                       |       |       |  |  |

## **Chemistry Structure Map RSC 2020** – Shows how we build knowledge within our curriculum to form cohesive SOW.

## The Big Questions and key ideas

Our approach to developing a clear narrative has been informed by expert thinking on curriculum design, in particular the Big Ideas of Science Education<sup>4</sup>, which explains how the links between ideas and experience is better preserved in a narrative form than in a list of disconnected points.

A narrative is important in ensuring a curriculum is coherent and aids planning for progression in learning. We have adopted a "Big Questions" approach, which reflects the enquiring nature of the discipline. The Big Questions help to define the central areas of interest in studying chemistry.

Using Big Questions as a narrative framework supports development of a coherent curriculum, as content - both knowledge and skills - can be selected to answer each question. All content earns its place, which means both teachers and learners can see the relevance of what is being taught.

The Big Questions can be answered at different levels of sophistication, and therefore can be applied to development of a continuous progression of learning.

The working groups have considered in detail the knowledge and skills that are relevant to include in answer to the Big Questions at ages 11-16 years and 16-19 years. In the framework diagram, this content is summarised as the key ideas that provide answers to the Big Questions. All learners should have the entitlement to study these ideas during their study of chemistry at secondary level, and in more depth if they choose to take the subject further. Curriculum developers would need to adapt the key ideas to the appropriate level for different educational stages and qualifications.

\*Principles and big ideas of science education, edited by Wynne Harlen, 2010 (Association for Science Education)

> All matter is made of one or more O chemical substances, which have unique properties and chemical composition

Bulk properties of substances in O different phases can be explained in their constituent particles

> Atoms or ions of elements (of which O there are only a relatively small number) combine in different ratios and structures to produce the huge variety of compounds that exist



