KS5 Biology Curriculum Map

KEVI HWGA Biology Curriculum Map 2022-2023

Cur	riculum Purpo	ose:
Context	Beyond KEVI HWGA:	Biological Careers : Aerobiologist - Agricultural Scientist – Bioinformatician – Biomechanics Engineer – Biomedical engineer or researcher – Biophysicist – Biostatistician – Cell Biologist – Conservationist – Cryobiologist – Cytologist – Ecologist – Exotoxicologist – Embryologist – Endocrinologist – Entomologist – Forensic Psychologist – Forensic Scientist – Geneticist – Genomics – Immunologist – Marine Biologist – Molecular Biologist – Pharmacologist – Teaching - Toxicologist – Veterinarian – Virologist – Zoologist
	KS5 Intent	KS5 Biologists will be taken on a journey that inspires and nurtures a passion for the subject through an in-depth study of Biological Molecules, Cells, Organisms, Genetics, Energy Transfers and links with the environment which is taught through theory, research, independent study and practical work. We will provide an enriched, broad and stimulating curriculum that empowers students to make decisions, critically evaluate scientific and technological developments that impact society and equip them with the knowledge and skills to pursue further study and rewarding careers.
	HPL skills	Key HPL skills such as strategic planning, precision, analyse, evaluate, critical or logical thinking are embedded within the practical experience which complement the scientific investigative skills and assessment objectives set by the exam board. Further HPL skills and teaching toolkit are applied such as big picture thinking, connection finding, generalisation, self-regulation and meta-cognition will be developed through this broad curriculum; enriched with a range of opportunities from presenting, project work, research, discussion, trips and independent work.

KING EDWARD VI HANDSWORTH WOOD GIRLS' ACADEMY			KEVI HWGA Curriculu	m Map		
YEAR 13						
	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	How do plants convert the light energy to chemical energy create in the form of carbohydrates?	How does cellular respiration provide ATP for metabolic processes in living organisms?	What do offspring look similar to their parents? How does the combination of alleles contribute to variation in a species?	What is the impact of external factors on gene expression? How can we manipulate our genome so as to treat	Exams	Exams

Bia Os	How are messages	Why is maintaining a	How can we use statistics to	disease, for medical, forensic		
Linked to NC	transmitted across synapses?	constant internal	determine the probability of a	and breeding purposes?		
	What mechanisms control	environment essential	genotype in a population?	What is the connection		
	contraction of muscles?	for living organisms?	Why are some inherited	between epigenetics and		
	How and why do multicellular	How does our lifestyle	diseases more common in	cancer?		
	organisms respond to stimuli	impact metabolic	males?How does affect			
	both within and outside their	diseases such as	evolution and can geographic			
	bodies?	diabetes?	isolation cause the evolution			
			of a new species?			
			What can we do to encourage			
			biodiversity?			
Key Content	Topic 5: Energy transfers in	Topic 5: Energy	Topic 7: Genetics,	Topic 8: Control of gene	Revision Topics 1-8	
	and between organisms –	transfers in and	populations, and	expression		
	Photosynthesis	between organisms –	ecosystems,	 Cells are able to control 	Synoptic Essay Practice	
	learning how energy is	Respiration	- All new species arise from an	their metabolic activities by		
	transferred in bioenergetics	In respiration, the	existing species, resulting in	regulating gene expression.	Practical Question	
	reactions. In photosynthesis,	hydrolysis of respiratory	different species sharing a	Although the cells within an	Practice	
	light is absorbed by chlorophyll	substrates is linked to the	common ancestry, as	organism carry the same	Tuetlee	
	and this is linked to the	production of ATP. In	represented in phylogenetic	coded genetic information,		
	production of ATP. The process	both respiration and	classification. Common	they translate only part of it.		
	of photosynthesis is common	photosynthesis, ATP	ancestry can explain the	In multicellular organisms, this		
	in all photoautotrophic	production occurs when	similarities such as common	control of translation enables		
	organisms. In communities, the	protons diffuse down an	chemistry, physiological, cell	cells to have specialised		
	biological molecules produced	electrochemical gradient	structure, DNA as the genetic	functions, forming tissues and		
	by photosynthesis are	through molecules of the	material and a 'universal'	organs. There are many		
	consumed by other organisms,	enzyme ATP synthase,	genetic code. The individuals of	factors that control gene		
	including animals, bacteria and	embedded in the	a species share the same genes	expression, some are external,		
	fungi. Some of these are used	membranes of cellular	but (usually) different	environmental factors, and		
	as respiratory substrates by	organelles.	combinations of alleles of	others are internal factors.		
	these consumers.	The process of	these genes, inherited from	The expression of genes is not		
	Photosynthesis and respiration	respiration is common in	their parent or parents. A	as simple as once thought,		
	are not 100% efficient. The	all organisms, providing	species exists as one or more	transcription being		
	transfer of blomass and its	indirect evidence for	populations. There is variation	increasingly recognized as		
	stored chemical energy in a	evolution.	In the phenotypes of	important Humans are		
	to a consumpt is also not 100%		organisms in a population, due	learning how to control the		
	officient		factors. A shange in the allele	evpression of genes by		
	encient.		frequency of a population is	altering the enigenome and		
	Topic 6: Organisms respond to		avolution These differences	how to alter genomes and		
	changes in their internal and	Topic 6: Organisms	may ultimately lead to	proteomes of organisms. This		
	external environments	respond to changes in	organisms in the isolated	has many medical and		
	Covering how a stimulus is	their internal and	population becoming unable to	technological applications.		
	detected by a recentor and a	external	breed and produce fertile	This should lead to an		
	coordinator formulates a	environments	offspring with organisms from	appreciation of common		
	suitable response to a	Mammalian hormones	the other populations.	ailments resulting from a		
	stimulus. An effector produces	stimulate their target	Competition occurs within and	breakdown of these control		
	a response. Receptors are	cells via the blood	between these populations for	mechanisms and the use of		
	the second second					

	specific to one type of	system. They are specific	the means of survival. Within a	DNA technology in the		
	stimulus. Nerve cells pass	to the tertiary structure	single community, one	diagnosis and treatment of		
	electrical impulses along their	of receptors on their	population is affected by other	human diseases.		
	length. A nerve impulse is	target cells and produce	populations, the biotic factors,			
	specific to a target cell only	responses that are	in its environment. Populations			
	because it releases a chemical	usually slow, long-lasting	within communities are also			
	messenger directly onto it,	and widespread. Plants	affected by, and in turn affect,			
	producing a response that is	control their response	the abiotic (physicochemical)			
	usually rapid, short-lived and	using hormone-like	factors in an ecosystem.			
	localised.	growth substances.				
Kev	Making synaptic links with AS	Labelling various organs,	Chi square, Hardy Weinberg	Gene expression, recombinant		
Knowledge	modules e.g. Labelling different	dissecting kidney and liver	principles, calculating ratios	DNA technology, gene		
Concents	stages of the cycles, structure	10 and 11. Data analysis	and probability, drawing	location, screening and		
concepts,	and function chloroplast and	and interpretation of	genetic diagrams, predicting	counselling, practical		
and skills	organelles within, various	graphs and data. Practical	genotypes and phenotypes,	competencies		
	proteins used in transport of	skills. Role of negative	analysing family pedigree			
	ions such as potassium/sodium	feedback in	trees, and explaining linkage.			
	pump. Practical competencies	thermoregulation and	Conservation methods, how			
	during practical work	osmoregulation.	succession occurs, Data			
		Importance of	analysis and calculations based			
		homeostasis. practical	on data. Practical			
		competencies during	competencies during practical			
-		practical work	work			
Assessment	AO1: Demonstrate knowledge	e and understanding of sci	entific ideas, processes, technic	ques, and procedures		
objectives:	AO2: Apply knowledge and ur	nderstanding of scientific i	deas, processes, techniques, ar	nd procedures: in a theoretical	context, in a practical contex	kt, when handling
	qualitative data, when handlin	ng quantitative data				
	AO3: Analyse, interpret and e	valuate scientific informat	ion, ideas and evidence, includ	ing in relation to issues, to mal	ve judgements and reach cor	nclusions develop and
	refine practical design and pro	ocedures.				
Feedback &	Baseline AS Test	Fortnightly Test	Fortnightly Test	Fortnightly Test	Synoptic Essay	
Assessment	buschine AS rest					Mock Exam
		CPAC assessment	CPAC assessment RP 9	CPAC assessment RP	CPAC assessment RP AS	
	CPAC assessment RP 7	RP 8 and 10		11 and 12	practical catch-up	
Year 12	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Big Qs	Why are carbon based	Why are biological	How are living organisms such	What is the role of mass	Why do mistakes such as	How do organisms
Linked to NC	biological molecules important	molecules important in	as mammals, fish, insects and	transport in exchange and	mutations cause distinct	maintain their energy
	to the survival of living	the transport of	plants specialised in order to	transport of substances such	aifferences in individuals?	requirements?
	organisms and how does	substances across cell	efficiently exchange	oxygen in blood and tissue	How does meiosis ensure	How can we investigate
	water serve a wide range of	surface membranes?	substances with their	fluid through the lymphatic	that variation occurs in a	energy transfer in
	roles in living organisms		environment?	system?	population?	organisms?
	aespite its small and simple	How are cell surface				How do plants obtain the
	nature.	membranes adapted to				necessary nutrients in

	How is genetic material	enable efficient	How is the digestive system	How does the nervous system	How does genetic diversity	spite of hostile
	replicated and how does this	transport of essential	organised in order to carry out	determine the functioning of	enable natural selection	conditions?
	impact on characteristics of	molecules?	absorption efficiently?	the cardiac cycle?	and survival of species?	
	individuals including the	How does the selectivity			What is the impact of	
	inheritance of genetic	of the cell surface		Why do larger organisms	natural selection on the	
	disorders through mutations.	membrane contribute to		need specialised transport	development of antibiotic	
	What is the role of ATP in	the transport of		systems and how are these	resistant superbugs and	
	various processes in the body	molecules into and out		systems adapted to perform	how could we reduce the	
	and how is this molecule made	of cells?		effectively?	creation of these? How	
	available to cells?				does selection ensure	
		How does the body		How does sexual	survival of a species?	
		defend itself from		reproduction lead to variation		
		pathogens? How do		and what are the benefits of		
		different types of white		this?		
		blood cells recognize and				
		bring about responses		How is this genetic material		
		that are specific and		Tran scripted and translated		
		appropriate?		in order to create the correct		
		How do vaccination		proteins in living organisms?		
		programmes help		Evidence for a universal		
Kan Cambant	Tania 4. Diala sia si		Tania 2. Organiana	genetic code?	Tania 2. One si ana	
Key Content	TOPIC 1: BIOIOGICAI	TOPIC 1: BIOlOgical	Topic 3: Organisms	Topic 3: Organisms	Topic 3: Organisms	
	molecules – (biochemistry)	molecules – Proteins	exchange substances with	exchange substances with	exchange substances	Synoptic essay practice
	covering key biological	form many cell	the environment – covering	the environment –	with the environment –	-,,
	and this provides indirect	important as onzumos	the exchange of substances	In large organisms, exchange	Mass transport maintains	Revision Tonics 1-4
	and this provides indirect	chamical massangars	between the internal and	surfaces are associated with	the final diffusion gradients	
	Carbohydrates used by cells as	and components of the		mass transport systems that	from the coll mombrones of	V12 Finals
	respiratory substrates and as	blood Nucleic acids carry	most substances must cross	overhange surfaces and the	individual colls. It also holps	
	structural components in	the genetic code to	cell plasma membranes. In	rest of the body and between	to maintain the relatively	Tomio Fr Frances
	plasma membranes and cell	produce proteins. The	large multicellular organisms	parts of the body	stable environment that is	Topic 5: Energy
	walls. Lipids uses, including the	genetic code is common	the immediate environment of	parts of the body.	tissue fluid	transfers in and
	bilayer of plasma membranes,	to viruses and to all living	cells is some form of tissue	Tonic 4: Genetic		between organisms –
	certain hormones, and as	organisms, providing	fluid. Most cells are too far	information variation and		learning how energy is
	respiratory substrates.	evidence for evolution.	away from exchange surfaces.	relationshing botwoon	Topic 4: Genetic	transferred in
		The most common	and from each other, for		information variation	bioenergetics reactions. In
	Topic 2 Cells – studying the	component of cells is	simple diffusion alone to	organisms	and relationships	photosynthesis, light is
	basic features in common and	water.	maintain the composition of	ie the sumber of energies of	hotwoon organisms	absorbed by chlorophyll,
	the differences between cells		tissue fluid within a suitable	in the number of species of	Differences between	and this is linked to the
	which are due to the addition		metabolic range	individual characteristics	individuals within a species	
	of extra features. This also	Topic 2 Cells – The		within a single species and in	could be the result of	
	provides indirect evidence for	basic structure of these		the variation of cell types	genetic factors of	
	evolution. All cells arise from	plasma membranes is the		within a single multicollular	environmental factors or a	
	other cells, by binary fission in	same and enables control	Topic 4: Genetic	organism Differences	combination of both	
	prokaryotic cells and by mitosis	of the passage of	information, variation, and	hetween species reflect	Biodiversity within a	
	and meiosis in eukaryotic cells.	substances across	relationships between	genetic differences s	community can be	
		exchange surfaces by	organisms - A gene is a	Senetic unter chees. 5		

		passive or active	section of DNA located at a		measured using species	
		transport. Cell-surface	particular site on a DNA		richness and an index of	
		membranes contain	molecule. The base sequence		diversity.	
		embedded proteins.	of each gene carries the coded		,	
		Some of these are	genetic information that		Statistics	
		involved in cell signalling	determines the sequence of			
		– communication	amino acids during protein			
		between cells. Others act	synthesis. The genetic code			
		as antigens, allowing	used is universal, providing			
		recognition of 'self' and	evidence for evolution. Genetic			
		'foreign' cells by the	diversity within a species can			
		immune system.	be caused by gene mutation,			
		Interactions between	chromosome mutation or			
		different types of cells	random factors associated with			
		are involved in disease,	meiosis and fertilisation. This			
		recovery from disease	genetic diversity is acted upon			
		and prevention of	by natural selection, resulting			
		symptoms occurring at a	in species becoming better			
		later date if exposed to	adapted to their environment.			
		the same antigen, or	Variation within a species can			
		antigen-bearing	be measured using differences			
		pathogen.	in the base sequence of DNA or			
			in the amino acid sequence of			
			proteins.			
Кеу	Synoptic links: bridging gap	Synoptic links: bridging	Structure and function of	Dissection of various	Natural selection, cell	Calculating percentage
Knowledge,	between GCSE and A-level	gap between GCSE and	gas exchange surfaces.	organs, label various	division, sexual	efficiency of energy
Concepts,	Biology	A-level Biology	Explore the different parts	organs, learn their	reproduction, genetic	transfer, interpreting
and skills			of the digestive system, its	structural adaptations,	diversity, directional and	data tables and graphs,
	Using graticules to calculate	Structure and function	adaptations and function in	sequence of cardiac cycle.	stabilising selection.	cycles of nitrogen and
	sizes of organelles	of cell surface	absorption of nutrients	creation of lymph and	biodiversity Calculating	phosphorous Impact of
	transposing equation to	membrane different	opportunity to link to	transport of glucose and	index of diversity, human	nitrogen-based
		membrane, different	GCSE Calculate rates of	water in plants. Cones and	impact on diversity, numan	fortilisors and
	calculate intage size,	defense mechanisms	dese, calculate fates of	the triplet code, comparing	random compling and	
	magnification, and actual	defence mechanisms,	absorption, ventilation	the triplet code, comparing	random sampling and	eutrophication.
	size of organelles,	cell mediated and	rates and ways to reduce	different types of RNA.	normal distribution	
	calculating mitotic index.	humoral Reponses,	the loss of water from gas		curves, mode, median,	Practical competencies
		vaccination, and HIV.	exchange surfaces.	Practical competencies	mean, standard	during practical work
		RP skills, maths skills,	Mechanism of ventilation	during practical work	deviation. Using log	
	Practical competencies	evaluating data,	and contrasting of		function, histograms,	
	during practical work	drawing calibration	breathing mechanisms in		sampling techniques.	
		curves,	various organisms.			
		increase/decrease in	C C		Practical competencies	
		nercentage mass	Practical competencies		during practical work	
		calculations	during practical work		adding proceeding from	
		carculations.				

		Practical skills,				
		evaluating data on				
		enzymes and				
		calculating molarity				
		and rates of reaction.				
		Drawing tangents and				
		applying structure of				
		biological structures to				
		their functions				
		Practical				
		competencies during				
		practical work				
Assessment	AO1: Demonstrate knowledge	and understanding of scie	entific ideas, processes, techniq	ues and procedures		
objectives:	AO2: Apply knowledge and un	derstanding of scientific id	leas, processes, techniques and	I procedures: in a theoretical c	ontext, in a practical context,	, when handling
	qualitative data, when handlin	g quantitative data				
	AO3: Analyse, interpret and ev	aluate scientific informati	on, ideas and evidence, includi	ng in relation to issues, to: ma	ke judgements and reach cor	clusions develop and
	refine practical design and pro	cedures.				
Feedback &	Baseline Test	Fortnightly Test	Fortnightly Test	Fortnightly Test	Fortnightly Test	Mock Exam
Assessment	Fortnightly Test	CPAC Practical	CPAC Practical	CPAC Practical	CPAC Practical	
	CPAC Practical					