

Mathematics - KEVI HWGA Curriculum Map

Curriculum Purpose:		
	Beyond KEVI HWGA:	Mathematics is a creative and highly inter-connected discipline that has been developed over centuries, providing the solution to some of history's most intriguing problems. It is essential to everyday life, critical to science, technology, and engineering, and necessary for financial literacy and most forms of employment. A high-quality mathematics education therefore provides a foundation for understanding the world, the ability to reason mathematically, an appreciation of the beauty and power of mathematics, and a sense of enjoyment and curiosity about the subject.
	KS5	A level Mathematics course gives students the opportunity to study 'pure' topics such as geometry, calculus and trigonometry and to use these ideas within the 'applied' topics such as mechanics and statistics. Students need an enthusiasm for problemsolving, and the course suits those with the tenacity to keep going in the hunt for possible solutions to awkward problems. Although mathematics is highly logical, it also requires imagination and determination to work well on your own: working on problems is the surest way to develop the knowledge and intuition required to do well and to develop the discipline needed to clearly communicate the solution. The 'applied' disciplines of mechanics and statistics require mathematical modelling to make sense of real-life problems. Students will learn how to model real-life situations in mathematical terms, how models are refined and how to identify limitations within this process. Students will be expected to use technology where appropriate; for example, the use of spreadsheets and graphical calculators to support statistical analysis.
	KS4	Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programme of study for key stage 4 is organised into apparently distinct domains, but pupils should develop and consolidate connections across mathematical ideas. They should build on learning from key stage 3 to further develop fluency, mathematical reasoning, and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge wherever relevant in other subjects and in financial contexts. KS4 (Y10-11) follow the Pearson Edexcel specification for Higher tier and OCR specification for foundation tier.
	KS3	In KS3, we teach for Mastery. Mastering maths means students of all ages acquiring a deep, long-term, secure and adaptable understanding of the subject. The phrase 'teaching for mastery' describes the elements of classroom practice and school organisation that combine to give students the best chances of mastering maths. Achieving mastery means acquiring a solid enough understanding of the maths that's been taught to enable students to move on to more advanced material.
	KS1/2 links	Students in KS3 will be familiar with the mastery approach in from their primary education. Therefore, we have ensured mastery continues in KS3

KEVI HWGA Curriculum Map						
Big Qs Linked to NC	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Year 7	Why is the number system themost important topic in maths? Students will understand; place value systems including base 10 (Place Value) Students develop their understanding of different models for multiplication and division. Studentsalso explore the axioms of number and which operations they can be applied to (Axioms \& Arrays) Students will understand and Establish the order of operations (order of operations) Students will be introduced to factors, multiples and important sets of numbers such as prime numbers, square numbers and cube numbers. Once the fundamental concepts have been introduced students are given the opportunity to develop their understanding, conjecture, problemsolve andgeneralise in a series ofstructuredtasks (Factorsand multiples)	Where are negative numbers used in real life? Students will understand; how to carry out a prime factor decomposition, LCM and HCF, square roots and cube roots. Students manipulate the prime factor decomposition to find how many factors a number has and also to problem solve. During this unit, indices are used to denote powers greater than 2 for the first time. (prime factors) Students will understand Negative numbers in context andusing negative numbers with all four operations, representingthe numberstructure (Positiveand negativenumbers) Students use algebraic notation to express the multiples of integers and see collecting like terms as a development of the distributive property. Students will understand; writing expressions, recognising equivalent expressions and substituting (Expressions, equations an inequalities)	Where is geometryused in the real world? Students will understand; how to draw and measure angles, angles on straight line and around a point, angles in parallel lines, creating expressions from angle facts (Angles) Students will be classifying polygons according to their properties, rotational and line symmetry, internal angle sum of triangles and quadrilateral (Classifying shapes)	How are the use of graphs beneficial in real life? Student be introduced to using a ruler, protractor and compasses to construct2-D shapesandusing properties of quadrilaterals to explore standard constructions (constructing triangles) Students will understand; how to plot points in four quadrants, horizontal and vertical lines, midpoints of line segments and problem solving on a coordinate grid (Coordinates)	When do we see the use of shapes and fractions in everyday situations? Students will use formulae to find area of triangles and quadrilaterals, formulae and solving equations. Also engage with generalised statements about the relationship between area and perimeter (Area of 2d shapes) Students areexpectedto consider how different transformations acting on an object produce different images. Reflection, rotation, translation and enlargement by a positive scale factor are first applied to anobjectona grid before moving onto a coordinate axis line and rotational symmetry (Transforming figures) Students will find equivalent fractions, converting between fractions and decimals, recurring decimals, multiply anddivide fractions, fractions of amounts, mixed numbers and improper fractions (conceptualising fractions)	Why is ratio and proportionso important in the real world? Students will extend their understanding ofapplying the fouroperationstonon-integer values. This includes non- integers represented as fractions, decimal fractions and mixed numbers. Students find fractions ofamountsby consideringthe multiplication of anamountbya fraction (All operations with fractions) Students will understand; ratio notations, understand the relationship between ratio and fractions, work with ratios and quantities, linking equivalence to fractions and decimal fractions (Ratio) Students to the use of percentages to compare quantities and find a given percentage of a quantity. Students then increase and decrease quantities by a given percentage and find the original quantity given a percentage of the quantity. Bar models provide an excellent representation of percentage change and equivalence between amounts (percentages)

Key Knowled ge, Concepts and skills	Numbers andnumerals, axioms and arrays, order of operations, factors andmultiples	Prime factor decomposition Positive and negative numbers, Introducing expressions, equations, and inequalities	Angles and classifying 2d shapes	Constructing triangles and quadrilaterals Coordinates	Area of 2-D shapes, transforming 2-D figures Conceptualizing andcomparing fractions	All operations acting on fractions Ratio Percentages
Feedback \& Assessm ent	Base line test EOHT Assessment Low stakes quiz KO Quiz	EOT Assessment Low stakes quiz KO Quiz	EOHT Assessment Low stakes quiz KO Quiz	EOT Assessment Low stakes quiz KO Quiz	EOHT Assessment Low stakes quiz KO Quiz	EOY Assessment Low stakes quiz KO Quiz
HPL	ACP: Seeing Alternate Perspectives VAA: Collaborative	ACP: Meta-Cognition VAA: Confident	ACP: Precision VAA: Enquiring	ACP: Automaticity VAA: Creative and Enterprising	ACP: Self-Regulation VAA: Risk-Taking	ACP: Connection Finding VAA: Practice
Careers	Accountancy $\frac{\text { https://babington.co.uk/blog/accounting/good- }}{\text { mathematician-good-accountant/ }}$	Aerospace and defence https://www.youthemployment.org.uk/care ers-hub-job-role/aerospace-engineer/	Architect $\frac{\mathrm{https}: / / \mathrm{www} \text {.arch2o.com/architec }}{\text { ts-need-maths-check-5-reasons/ }}$	Software Engineering/Video Games https://www.mathscareers.org.uk/i az-pearson-software-engineer/	Chef https://nationalcareers.service.gov.uk/j ob-categories/hospitality-and-food	Hair and Beauty Nutritionist https://nationalcareers.service.gov.uk/j ob-categories/beauty-and-wellbeing

KEVI HWGA Curriculum Map

| | and solve inequalities
 based on geometric
 properties, contexts and
 pictorial representations,
 and experience
 manipulations that do and
 do not preserve inequality
 relationships. (forming and
 solving inequalities) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Key Knowledge, Concepts and skills	Generating term to term sequence for linear and nonlinear, find thenthterm Forming and solving equations and inequalities	Plot linear graph and find the equation of the line and parallel line Drawing and interpreting reallife graphs	Drawing and interpreting real-life graphs, multiplicative relationships, proportion	Calculate averages, representing data usinga suitable diagram Bivariate data, scatter diagramm	Anglesin apolygon and their properties. Draw, measure and solve problems involving bearings	Circumference of circle, area of a circle, prisms and cylinders, volume, surface area
Feedback \& Assessment	EOHT Assessment Low stakes quiz KO Quiz	EOT Assessment Low stakes quiz KO Quiz	EOHT Assessment Low stakes quiz KO Quiz	EOT Assessment Low stakes quiz KO Quiz	EOHT Assessment Low stakes quiz KO Quiz	EOY Assessment Low stakes quiz KO Quiz
HPL	ACP: Critical or Logical Thinking VAA: Perseverance	ACP: Intellectual Playfulness VAA: Resilience	ACP: Speed and Accuracy VAA: Confident	ACP: Strategy Planning VAA: Enquiring	ACP: Generalisation VAA: Risk-Taking	ACP: Complex and Multistep Problem Solving VAA: Practice
Careers	Science and Research https://nationalcareers.servic $\frac{\text { e.gov.uk/job- }}{\text { categories/science-and- }}$ research	Hospitality and Food (fractions, percentages) https://nationalcareers.servi ce.gov.uk/job- categories/hospitality-and- food	Chef https://nationalcareers.service.gov.u kjob-categories/hospitality-and-food	Actuarial Analyst/Statistician https://www.mathscareers.org. uk/morgan-smith-woodhams-actuarial-analyst/	Software Engineering/Video Games https://www.mathscareers.org $\frac{\text { uk/jaz-pearson-software- }}{\text { engineer! }}$	Engineering https://nationalcareers.s ervice.gov.uk/job-categories/engineering-and-maintenance

Year 9

KEVI HWGA Curriculum Map

Big Qs Linked to NC	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Year 9	STEM: Explain why a tall, thin mug of tea willcoolmore slowly from its surface that a short wideone. Students are introduced to theoretical probability in a variety of contexts and with a variety of representations. Combined events are considered with the use of sample spaces, twoway tables and probability tree diagrams. They compare experimental to theoretical probability. (Probability) Students build on their existing understanding of Venn diagrams by being introduced to set notation. Students are introduced to probability presented in Venn diagrams and set notation. Students interpret and convert between representations to solve problems. (Sets and Venns)	When finding a missing angle, can you only use one ratio? Students work on algebraic manipulation, including some revision of solving linear equations. Students are formally introduced to some formal algebraic manipulation methods such as equation scaling and addition and subtraction of equations within a system. They will solve simultaneous equations bye manipulating equations, substituting and eliminating variables. (Solving linear simultaneous equations algebraically) Students explore linear graphs to connect understanding of solutions to linear equations in two variables to the coordinates of points that lie on their graphs, including intersections as simultaneous equations. (Solve simultaneous equations graphically)	Can two events be mutually exclusive? Students are introduced to loci and use the properties of circles to find the locus of points that are a specific distance from a point. Students develop this to find the locus of points that are equidistant from two points and use this to construct perpendicular bisectors. They will be introduced to the conditions of congruency and ways to construct triangles. (Constructions, congruence and loci) Students are introduced to Pythagoras' Theorem and start to look at different contexts in which Pythagoras' theorem can be used, suchas within 2-D shapes, 3-D shapes and the Cartesian plane (Pythagoras theorem)	What is the ratio of the side lengths of a wide screen TV measuring 42"? How can you setupan equation using Pythagoras to solve this question? Students are introduced to the idea of similarity in the context of enlargement. They use, then learn, how to find the scale factor from the unit ratio. After working with inter-shape relationships, they revisit the idea of constants of proportionality. They are introduced to the centre of enlargement and use this. (Similarity and enlargement) Students are introduced to the sine, cosine and tangent rule to work out missing lengths and angles of right-angled triangles. (Trigonometry)	Where in the reallife would you need to think about congruent and similar shapes? Students look at quadratic expressions and equations. They also begin looking at quadratic graphs and common visual features of them, such as the curve and turning point. Students also look at graphs of quadratic functions. (Quadratic expressions and equations) Students are introduced to rational and irrational numbers, and surds. (surds)	Why are indices and standard form crucial to know when learning aboutgalaxy andspace? Students will look at indices and roots, including cases with negative indices and an index of zero. Students will then focus on the index laws, looking at multiplication, division, and raising to further powers. (Indices) Students are introduced to numbers written in standard form as tools to consider and compare very large and very small numbers. (Standard form) Decimal multipliers to calculate percentage change is built on by considering repeated change, first with different percentages and then with the same percentage (compound change). Graphical representations of growth and decay are considered (Growth and Decay)

Key Knowledge, Concepts and skills	mutually exclusive events, experimental and theoretical probability, sample space diagram, two-way tables, Venn diagrams	Forming and solving linear equations and inequalities Solving algebraically and graphically Solving simultaneous equations	Constructing lines and triangles Showing congruency Displaying regions for loci Using Pythagoras' Theorem	Similarity in shapes and triangles through enlargement enlargement, negative and fractional scale factors Ratios in triangles, tangent ratio, sine ratio, cosine ratio, using trigonometry to find angles	quadratic equations, graphs of quadratic functions rational and irrational numbers	Indices Calculation and estimates in standard form Compound measures using multipliers
Feedback \& Assessment	EOHT Assessment Low stakes quiz KO Quiz	EOT Assessment Low stakes quiz KO Quiz	EOHT Assessment Low stakes quiz KO Quiz	EOT Assessment Low stakes quiz KO Quiz	EOHT Assessment Low stakes quiz KO Quiz	EOY Assessment Low stakes quiz KO Quiz
HPL	ACP: Originality VAA: Perseverance	ACP: Intellectual Confidence VAA: Resilience	ACP: Big Picture Thinking VAA: Enquiring	ACP: Critical or Logical Thinking VAA: Confident	ACP: Originality VAA: Collaborative	ACP: Automaticity VAA: Practice
Careers	Engineering https://nationalcareers.serv ic e.gov.uk/job-categories/engineering-and- maintenance Chemist https://nationalcareers.ser vice.gov.uk/jobprofiles/chemist	Interior Design https://nationalcareers.servic $\frac{\text { e. gov.uk/job- }}{\text { categories/creative- and- }}$ $\frac{\text { media }}{}$	Science and Research https://nationalcareers.ser vice.gov.uk/job-categories/science-andresearch	Construction $\frac{\text { https://nationalcareers.servi }}{\text { ce.gov.uk/job- }}$ $\frac{\text { profiles/construction- }}{\text { labourer }}$	Software Engineering/Video Games https://www.mathscareers.org .ukjaz-pearson-software- engineer/	Biologist (Indices, standard form) https://nationalcareers.ser vice.gov.uk/jobprofiles/biologist

	What is the real-world benefit of the number 60 having lots of factors? Unit 1: Number Students will learn about calculations, decimal numbers, place value, factors and multiples, squares, cubes and roots, index notation and prime factors. (Computer Science) Sally is 54 years old, and her mother is 80 , how many years ago was Sally's mother three times her age? Unit 2: Algebra Students will learn about Algebraic expressions, simplifying expressions, substitution, formulae, expanding brackets, factorising, using expressions and formulae. (Science)	What are the different types of bar charts? Unit 3: Graphs, tables, and charts Students will learn about frequency tables, two-way tables, representing data, time series, stem and leaf diagrams, pie charts and scatter graphs. (Physical Education) What are unit fractions? Unit 4: Fractions and percentages Students will learn about working with fractions, operations with fractions, fractions, decimals, and percentages and calculating percentages. (Music) What is the difference between equations and formulae? Unit 5: Equations, inequalities, and sequences Students will learn about solving equations, inequalities, formulae, generating sequences and using the nth term of a sequence. (Science)	For an infinite-sided regular polygon, what would the values of the interior and exterior angles be? Unit 6: Angles Students will learn about properties of shapes, angles in parallel lines, angles in triangles, exterior and interior angles, and geometrical patterns. (Design Technology) How many pairs of integers can you find where the mean and the range are the same? Unit 7: Averages and range Students will learn about mean, mode, median and range, types of averages, estimating the mean and sampling. (Physical Education) Estimate the area of skin on different parts of your body. Do you need to include all the faces? Unit 8: Perimeter, area, and volume 1 Students will learn about rectangles, parallelograms, triangles, trapezia, changing units, area of compound shapes, surface area of 3D solids and volume of prisms.	Can you explain why the coefficient of x is the gradient of the straight-line graph? Unit 9: Graphs Students will learn about coordinates, linear graphs, gradient, $\mathrm{y}=\mathrm{mx}+\mathrm{c}$, real-life graphs, and distance-time graphs. (Science) You want to increase your page by 120%. What is the scale factor? Unit 10: Transformations Students will learn about translation, reflection, rotation, enlargement, describing enlargements and combining transformations. (Art \& Design Technology) If you double an amount being shared, does each of the shared parts in the answer double? Unit 11: Ratio and proportion Students will learn about writing ratios, using ratios, ratios, and measures, comparing using ratios, using proportion, proportion and graphs and proportion problems. (Food Technology)	How can you tell if a right- angled triangle question requires you to use Pythagoras' Theorem or SOHCAHTOA? Unit 12: Right-angled triangles Students will learn about Pythagoras' theorem, the three trigonometric ratios, sine, cosine, and tangent. Finding lengths and angles using trigonometry. (Music) You wake up one morning and look out of the window. What might the weather be doing that day? Unit 13: Probability Students will learn about calculating probability, experimental probability, Venn diagrams and tree diagrams. (Religious Education)	True or false? Two objects that have the same mass always have the same density. Unit 14: Multiplicative reasoning Students will learn about percentages, growth and decay, compound measures, distance, speed and time, direct and inverse proportion. (Physics) Measured from North, what is the angle of each of the main compass directions N, E, S, W, and the intermediate directions NE, SE, SW, NW? Unit 15: Constructions, loci, and bearings Students will learn about 3D solids, plans and elevations, accurate drawings, scale drawings and maps, constructions, loci, regions, and bearings. (Art \& Design)
Feedback \& Assessment	EOHT Assessment Unit Test KO Quiz	EOT Assessment Unit Test KO Quiz	EOHT Assessment Unit Test KO Quiz	EOT Assessment Unit Test KO Quiz	EOHT Assessment Unit Test KO Quiz	Finals Unit Test KO Quiz
HPL	ACPS: Connection Finding, Originality. Speed \& Accuracy, Meta-Cognition, Complex \& Multistep Problem Solving, Self-Regulation VAAs: Practice, Perseverance, Resilience					
Careers	Unit 1: Estimator Unit 2: Dietitian	Unit 3: Data Analyst Unit 4: Sales Unit 5: Quality Manager	Unit 6: Environmental Engineer Unit 7: Sports Coach Unit 8: Farm Manager	Unit 9:Construction Manager Unit 10: Animator Unit 11: Chef	Unit 12: Civil Engineer Unit 13: Meteorologist	Unit 14: Retail Banker Unit 15: Architect

	How many prime numbers are there? Unit 1: Number Students will learn about number problems and reasoning, place value and estimating, HCF and LCM, calculating with powers (indices), zero, negative and fractional indices, standard form, and surds. (Computer Science) Sally is 54 years old, and her mother is 80, how many years ago, was Sally's mother three times her age? Unit 2: Algebra Students will learn about algebraic indices, expanding and factorising, equations, formulae, linear sequences, and non-linear sequences. (Science)	House prices are followed closely by economists, who tend to favour a median measure rather than the mean. Why is that? Unit 3: Interpreting and representing data Students will learn about Statistical diagrams, time series, scatter graphs, averages, and range. (Physical Education) The ancient Egyptians only ever used unit fractions what are unit fractions? Unit 4: Fractions, ratio, and percentages Students will learn about Fractions, ratios, ratio and proportion, percentages, fractions, decimals, and percentages (Music) A square has a diagonal length of 1 m . What is the area of the square? Unit 5: Angles and trigonometry Students will learn about angle properties of triangles and quadrilaterals, interior and exterior angles of a polygon, Pythagoras' theorem, and trigonometry. (Design Technology)	How are smartphones programmed to read the acceleration the phone experiences? Unit 6: Graphs Students will learn about linear graphs, graphing rates of change, real-life graphs, line segments, quadratic graphs, cubic and reciprocal graphs. (Science) What is the difference between the accuracy and the precision of a measurement? Unit 7: Area and volume Students will learn about perimeter and area, units and accuracy, prisms, circles, sectors of circles, cylinders and spheres, pyramids, and cones (Art) An enlargement by a scale factor of x produces the same image as a rotation of y degrees. What are the values of x and y ? Unit 8: Transformations and constructions Students will learn about 3D solids, reflection and rotation, enlargement, transformations and combinations of transformations, bearings, and scale drawings, constructions, and loci (Art \& Design Technology)	What are the differences between equations and inequalities? Unit 9: Equations and inequalities Students will learn about solving quadratic equations, completing the square, solving linear and quadratic simultaneous equations, and solving linear inequalities. (Science) Why learn about experimental probability? Unit 10: Probability Students will learn about combined events, mutually exclusive events, experimental probability, independent events and tree diagrams, conditional probability, Venn diagrams and set notation. (Religious Education) The area of a city grows by 10\% each year. Assume the city is circular, by what percentage does its diameter grow in 5 years? Unit 11: Multiplicative reasoning Students will learn about growth and decay, compound measures, ratio, and proportion (Physics)	True or false? Two objects that have the same mass and volume will have the same density. Unit 12: Similarity and congruence Students will learn about congruence, geometric proof and congruence, similarity, and similarity in 3D solids. (Art \& Design Technology) What happens if you use the sine rule on a right-angled triangle trigonometry question? Unit 13: More trigonometry Students will learn about accuracy, graph of the sine and cosine function, the tangent function, calculating areas and the sine rule, the cosine rule and 2D trigonometric problems, solving problems in 3D and transforming trigonometric graphs. (Music)	Would you expect the interquartile range of heights of Year 7 or Year 11 students to be larger? Unit 14: Further statistics Students will learn about sampling, cumulative frequency, box plots, drawing histograms, interpreting histograms, comparing, and describing populations. (Geography) What is the difference between a plot and a sketch of a quadratic graph? Unit 15: Equations and graphs Students will learn how to Solve simultaneous equations graphically, represent inequalities graphically, graphs of quadratic functions, solve quadratic equations graphically and graphs of cubic functions. (Physical Education)
Feedback \& Assessment	EOHT Assessment Unit Test KO Quiz	EOT Assessment Unit Test KO Quiz	EOHT Assessment Unit Test KO Quiz	EOT Assessment Unit Test KO Quiz	EOHT Assessment Unit Test KO Quiz	Finals Unit Test KO Quiz
HPL	ACPS: Connection Finding, Originality. Speed \& Accuracy, Meta-Cognition, Complex \& Multistep Problem Solving, Self-Regulation VAAs: Practice, Perseverance, Resilience					
Careers	Unit 1: Cost Estimator Unit 2: Dietitian	Unit 3: Data Analyst Unit 4: Sales Unit 5: Civil Engineer	Unit 6: Construction Manager Unit 7: Farm Manager Unit 8: Animator	Unit 9: Quality Manager Unit 10: Meteorologist	Unit 11: Retail Banker Unit 12: Architect	Unit 13: Astronomer Unit 14: Statistician

	You want to increase your page by 120%. What is the scale factor? Unit 10: Transformations Students will learn about translation, reflection, rotation, enlargement, describing enlargements and combining transformations. (Art \& Design Technology) If you double an amount being shared, does each of the shared parts in the answer double? Unit 11: Ratio and proportion Students will learn about using and comparing ratios and using proportion. (Food Technology) How can you tell if a question requires you to use Pythagoras' Theorem? Unit 12: Right-angled triangles Students will learn about Pythagoras' theorem, the three trigonometric ratios, finding lengths and angles using trigonometry. (Music)	Will two objects that have the same mass have the same density? Unit 14: Multiplicative reasoning Students will learn about percentages, growth and decay, compound measures, distance, speed and time, direct and inverse proportion. (Physics) Measured from North, what is the angle of each of the main compass directions: N, $E, S, W ?$ Unit 15: Constructions, loci, and bearings Students will learn about 3D solids, plans and elevations, accurate drawings, scale drawings and maps, constructions, loci, regions, and bearings. (Art \& Design) Why do you think we use the word, factorising? Unit 16: Quadratic equations and graphs Students will learn about expanding double brackets, using quadratic graphs, factorising quadratic expressions, and solving quadratic equations. (Physical Education)	One estimate for the age of the universe is 13.8 billion years. How many seconds is this? Unit 18: Fractions, indices, and standard form Students will learn about multiplying and dividing fractions, the laws of indices, writing large numbers in standard form, writing small numbers in standard form, and calculating with standard form. (Physics) Which of the four shape transformations produce images that are always congruent with their original shapes? Unit 19: Congruence, similarity, and vectors Students will learn about similarity and enlargement, using similarity, congruence, and vectors. (Art \& Design Technology) There are 5 Platonic solids. What are they called? Can you prove why there are only 5 Platonic Solids and no more? Unit 20: More algebra Students will learn about graphs of cubic and reciprocal functions, nonlinear graphs, solving simultaneous equations graphically and algebraically, rearranging formulae and proof. (Science)	What are your secure and insecure areas in mathematics? Students will use this time to consolidate on what they have learnt previously and addressing their weak areas. Along with identifying what action is planned to secure the insecurities.	What are your secure and insecure areas in mathematics? Students will use this time to consolidate on what they have learnt previously and addressing their weak areas. Along with identifying what action is planned to secure the insecurities.	Examinations
Feedback \& Assessment	EOHT Assessment Unit Test KO Quiz	Mock Exams Unit Test KO Quiz	EOHT Assessment Unit Test KO Quiz	Mock Exams	Exam Papers	Exam Papers
HPL	ACPS: Connection Finding, Originality. Speed \& Accuracy, Meta-Cognition, Complex \& Multistep Problem Solving, Self-Regulation VAAs: Practice, Perseverance, Resilience					
Careers	Unit 10: Animator Unit 11: Chef Unit 12: Civil Engineer	Unit 14: Retail Banker Unit 15: Architect Unit16:Agriculturalconsultant	Unit18: Research Scientist Unit 19: Mechanical Engineer Unit 20: Structural Engineer			

	Would you expect the interquartile range of heights of Year 7 or Year 11 students to be larger? Unit 14: Further statistics Students will learn about sampling, cumulative frequency, box plots, drawing histograms, interpreting histograms, comparing, and describing populations. (Geography) What is the difference between a plot and a sketch of a quadratic graph? Unit 15: Equations and graphs Students will learn how to Solve simultaneous equations graphically, represent inequalities graphically, solve quadratic equations graphically and graphs of cubic functions. (Physical Education) Why is it called the alternate segment theorem? Unit 16: Circle theorems Students will learn about radii and chords, tangents, angles in circles and how to apply circle theorems. (Art \& Design Technology)	What are the similarities between the functions that computer programmers write, and the functions used in GCSE Maths? Unit 17: More algebra Students will learn how to Rearrange formulae, manipulate algebraic fractions, solve problems involving Surds and algebraic fraction equations, functions, and algebraic proof. (Physics) How do sailing boats sail into the wind? Unit 18: Vectors and geometric proof Students will learn how to use vectors, vector notation and Vector arithmetic. They will use these to solve problems involving parallel vectors and collinear points and solve geometric problems. (Physics \& Computer Science) How could being able to measure the tangent to a curve be important in designing high-speed roads? Unit 19: Proportion and graphs Students will learn more about Direct and inverse proportion. They will also explore exponential functions, non-linear graphs, translating graphs of functions and reflecting and stretching graphs of functions. (Design Technology)	What are your secure and insecure areas in mathematics? Students will use this time to consolidate on what they have learnt previously and addressing their weak areas. Along with identifying what action is planned to secure the insecurities.	What are your secure and insecure areas in mathematics? Students will use this time to consolidate on what they have learnt previously and addressing their weak areas. Along with identifying what action is planned to secure the insecurities.	What are your secure and insecure areas in mathematics? Students will use this time to consolidate on what they have learnt previously and addressing their weak areas. Along with identifying what action is planned to secure the insecurities.	Examinations
Feedback \& Assessment	EOHT Assessment Unit Test KO Quiz	Mock Exams Unit Test KO Quiz	EOHT Assessment Unit Test KO Quiz	Mock Exams	Exam Papers	Exam Papers
HPL	ACPS: Connection Finding, Originality. Speed \& Accuracy, Meta-Cognition, Complex \& Multistep Problem Solving, Self-Regulation VAAs: Practice, Perseverance, Resilience					
Careers	Unit 14: Data Analyst Unit 15: Structural Engineer Unit 16: Civil Engineer	Unit 17: Mechanical Engineer Unit 18: Astronomer Unit 19: Research Scientist				

Year 12

KEVI HWGA Curriculum Map

	KEVI HWGA Curriculum Map					
Big Qs Linked to NC	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Year 12	How does quadratic equations relate to formulating the speed of an object? Students will learn about Algebraic expressions, Quadratics Equations \& inequalities (Pure: Chapter 1,2,3) How do particle physicists use graphs to determine the nature of subatomic particles? Students will learn about graphs \& transformations, straight line graphs (Pure Chapter 4 and 5) How can we ensure we avoid bias with our sampling methods? Students will learn about Data collection, (Applied:chapter 1) How can surveyors use Trigonometry when planning building projects? Students will build upon GCSE Trigonometry and about Trigonometric Ratios (Pure chapters 9,10)	How did the government use Statistics to address the nation during COVID-19? Students will learn about measures of location and spread and representations of data (Applied Chapters 2,3)	What forces are involved when a car air-bag is inflated? Students will learn about Newton's Laws of Motion and Vectors (Applied Chapters 10, 11) How do sports teams plan strategies for future games? Students will learn about Correlation and Probability (Applied Chapters 4,5) How can we calculate a rate of change? Students will be introduced to the concept of Differentiation? (Pure Chapter 12)	How can ascertain whether your results from an experiment were obtained by chance? Students will learn about Statistical Distributions and Hypothesis Testing (Applied Chapter 6 and 7) How do you prove that the sum of two consecutive prime numbers is always even? Students will learn about constructing mathematical arguments (Pure Chapter 7) How can we accurately calculate the area under a curved graph? Students will be introduced to the concept of Integration (Pure Chapter 13)	What base of logarithms are used to express the size of seismic activity? Students will learn about exponentials and logarithms (Pure Chapter 14) When does a space rocket experience variable acceleration? Students will learn about variable acceleration (Applied Chapter 11)	Revision applied \& pure continued+ EOY exams Start yr13 content Pure only

Key Knowledge, Concepts and skills	Multiply and divide integer powers, expand a single term over brackets, expanding triple brackets, factorise linear quadratics and cubic expressions, use laws of indices, simplify and rationalise surds, sketch graphs, use intersection points of graphs to solve equations, translate graphs, stretch graphs Expand a single term over brackets, expanding triple Brackets. Midpoint of a line segment, equation of the perpendicular bisector of a line segment, equation of a circle, circle properties	Use Pascals triangle to identify binomial coefficients and use them to expand simple binomial expressions, Use combinations and factorial notation, make approximations using the binomial expansion. Acceleration, velocity and distance travelled.	Find Derivatives, identify increasing and decreasing functions, sketch the gradient function. Forces, Newtons First Law. Venn Diagram, Independent, Mutually Exclusive.	Find indefinite and definite integrals. Proof by deduction, exhaustion, counterexample. 1 tail, 2 tail, critical value, acceptance region.	Use laws of logs to solve problems. Use calculus for kinematics for motion in a straight line.	
Feedback \& Assessment	EOHT Assessment	EOT Assessment	EOHT Assessment	EOT Assessment	EOHT Assessment	EOY Assessment
HPL	ACP: Self Regulation VAA: Resilience	ACP: Connection Finding VAA: Perserverance	ACP: Flexible Thinking VAA:Confident	ACP: Automaticity VAA: Enquiring	ACP: Strategy Planning VAA: Creative and Enterprising	ACP: Complex and Multistep Problem Solving VAA: Practice
Careers	AppliedData Analytics Statistician (data collecton)$\frac{\text { (Data analyst-statistician \| Explore }}{\text { careers \| National Careers }}$$\underline{\text { Service) }}$Investment Analyst (correlation)$\frac{\text { (Investment analyst job profile }}{\mid \text { Prospects.ac.uk) }}$Data Scientist (representations of data) (Datascientistjobprofile \mid Prospects.ac.uk)	```Pure \\ Architectural Technologist (straight line graphs) \\ (Architectural technologist job profile \| Prospects.ac.uk) \\ Epidemiologist (straight- line graphs) (Epidemiologist job profile \\ (Prospects.ac.uk) \\ Applied``` Risk Manager (hypothesis testing) (Risk manager job profile Prospects.ac.uk)	PureEngineers (circles)(Engineeringandmaintenance) Explore careers (nationalcareers.service.gov.uk)Applied Games Programmer (forces and motions) $\frac{\text { (Computer games developer \| }}{\text { Explore careers \|National }}$ Careers Service)		PureNuclear Scientist (logarithms) (Nuclear engineer \| Explore careers \| National Careers Service)	

Year 13

Key Knowledge, Concepts and skills	Multiply and divide algebraic fractions, convert improper fractions into partial fraction forms, estimating coefficients in exponentials models, calculate moment correlation Turning effect, resultant moment, equilibrium problems, no- uniform problems, problems at the point of tilting, resolving forces, triangle law, smooth \& rough planes, friction coefficient, vertical components, quadratic, modelling trajectories, derive formula for time andrange.	Substitution, arithmetic sequences, , setnotation, Venn diagrams, conditional probability, two way tables, tree diagrams, normal distribution curve, standard deviation, binomial distribution approximation. Arc length, fractions, area of a circle, trigonometric graphs, Pythagoras, angle approximations, trigonometricidentities increasing and decreasing functions, consecutive proof, ratio, partial fractions, binomial expansion, Pascal's triangle, infinite series.	Double angle, proof, substitution, rearranging, proving identities, , trigonometric modelling, converting parametric to cartesian form, trigonometric identities, coordinate geometry, modelling using parametric functions. Differentiate and Integrate trigonometric functions, exponentials, logarithms, parametric functions, implicit differentiation, second derivatives, rates of change. Locating roots, iteration, NewtonRaphson procedure, apply numerical methods to solve problems. Solving for unknown forces in equilibrium system, statics, pulleys, tension, inclined planes, smooth \& rough, problems with connected particles, vector equations of motion, displacement, velocity, acceleration, differentiation, vectors with respect with time	Integration, trigonometric function, hypothesis testing in the normal distribution		
Feedback \& Assessment	EOHT Assessment	EOT Assessment	EOHT Assessment	EOT Assessment	EXAMS	EXAMS
HPL	ACP: Self Regulation VAA: Resilience	ACP: Big Picture Thinking VAA: Perserverance	ACP: Precision VAA:Practice	ACP: Speed and Accuracy VAA: Risk-Taking		
Careers	Pure Military (quadratic functions) (Careers\|TheBritishArmy (mod.uk) Applied Geneticist (conditional probability) (Geneticist \| Explore careers National Careers Service)	Pure Computing (binomial expansion) (Computing, technology and digital \| Explore careers (nationalcareers.service.gov.uk) Applied Sports Science (projectiles) (Performancesportsscientist\| Explorecareers \|National Careers Service)		Applied Environmental Engineer (differentiation and integration) (Environmental engineer job profile \| Prospects.ac.uk)		
Concept Threshold	Functions (A-Level Physics) Regression and Correlation (ALevel Biology)	Binomial Expansion (A-Level Computer Science) Forces and Projectiles (A-Level Physics)	Trigonometric Functions (A-Level Physics) Kinematics (A-Level Physics)	Integration (A-Level Physics)		

